
Powerful Puzzling
A Jigsaw-Puzzle Solver That Works with Island Pieces

Jean Charle Yaacoub
j.yaacoub@queensu.ca
Queen’s University

Kingston, ON, Canada

James Gleave
17jhg5@queensu.ca
Queen’s University

Kingston, ON, Canada

Christian Muise
christian.muise@queensu.ca

Queen’s University
Kingston, ON, Canada

Figure 1: Top five matches found from Powerful Puzzling on a puzzle with island pieces. Lines in green indicate correctly
identified matches and the numbers are their corresponding match scores (lower is better).

ABSTRACT
Jigsaw puzzles are a staple of at-home entertainment and have ex-
ploded in demand due to COVID-19 forcing people to stay at home
[5], and with that comes the demand for jigsaw puzzle solvers.
However, currently available solutions require a fully disassem-
bled puzzle in order to work [9, 12], robbing the player from the
satisfaction of completing a puzzle.

Here we explore a solution to this with our “Powerful Puzzling”
algorithm. A jigsaw puzzle solver that can work with island pieces
(a group of two or more connected pieces), making for a more
practical approach to puzzle-solvers allowing for its use at any
stage in the puzzle-solving journey. The backbone of our algorithm
is the unrolling of border contours into 1D strips which can be
segmented and compared with other strips to find matches. By
working in 1 dimension we do not have to worry about making
rotations and translations to get pieces to match.

Furthermore, when comparing strips, we use Dynamic Time
Warping (DTW) for both shape and color matching combining the
results to get a final match score [13]. We apply a weighting of (2,
1) for the shape and color score, respectively, to get the best perfor-
mance with three out of the top five matches correctly identified.

And with the use of high-level filters to eliminate unlikely matches,
we can avoid performing costly DTW comparisons allowing the
entire program to be run in under 3 seconds.

From the results, we observe that the program still has room
to improve. For instance, the technique for image segmentation
is not dynamic to all environment conditions and requires even
lighting and a plain background to accurately extract the borders
of each puzzle piece. The results could be improved with better
segmentation techniques/more time spent training and tuning the
Mask-RCNNwe had attempted to use. In addition, the color matcher
lags far behind the shape matcher in terms of providing accurate
match scores. However, the Powerful Puzzling algorithm still shows
promise and more research is needed to improve the sampling of
the colors to get a better representation of the border, and/or the
DTW algorithm used.

KEYWORDS
Computer Vision, Mask-RCNN, Puzzle-solver, Puzzle Matching

https://orcid.org/0000-0002-8391-6289
https://orcid.org/0000-0002-2728-6585

Jean Charle Yaacoub, James Gleave, and Christian Muise

1 INTRODUCTION
Current jigsaw puzzle solvers are simple algorithms that require
ideal conditions to extract the borders of individual puzzle pieces.
They can completely solve a puzzle from start to finish but fail
to work with island pieces and thus cannot pick up from where a
player left off. This failure is due to their reliance on brute force
matching, performing rotations and translations with each pair
of puzzle pieces until a match is found [9, 12]. Herin we define a
match as the pair of puzzle pieces that have the lowest match score,
representing the distance between border pairs in terms of their
color values and shape. The lower the distance, the lower the match
score.

Using this idea of a match score, we explore the problem of
the jigsaw puzzle solver and present a solution that works with
island pieces. We approach the problem from the perspective of
a tool to help players in their puzzle-solving journey. Or, in other
words, to provide hints as they solve the puzzle without requiring
disassembly.

We begin with a background on the puzzle solver with a short
dive into the current day solutions and other related works that
were useful to the inception of the Powerful Puzzling algorithm.
Next, we explain our approach to solving the problem from a high-
level perspective. And follow up with a detailed dive into how the
problem was broken up into smaller subproblems and how we
arrived at their corresponding solutions. Finally, we end the report
with an evaluation of the work done, a summary that includes an
analysis of the results, and our ideas for future work/improvements.

2 BACKGROUND
In our approach, we consider how a puzzle player could use such a
tool. We do not want to rob the player of the enjoyment of solving
a puzzle, and so our solution aims to solve puzzles that range from
disassembled to partly completed with island pieces. This allows
us to provide help to players at any step in their puzzle solving
journey.

Examples of current puzzle solvers includeMaxim Terleev’s from
his article in Towards Data Science and Abto Software’s solver on
their own site. These solutions are straightforward with Terleev’s
being done in around 300 lines of code, and Abto following a similar
structure but without any code provided [9, 12].

Both solutions follow the same general process. Starting with
image processing, the goal is to extract the borders/contours of the
puzzle pieces from the image. Here, both solutions use a simple
thresholding technique to create a mask that separates the back-
ground from the individual puzzle pieces. Then this mask is used
to extract the borders using tools like OpenCV’s findContours() to
do so [2]. Then they identify the location of the locks on each (the
jigsaw nodes that connect with other pieces) and segment them for
use in matching. For matching, there are two metrics that are used:
the shape of the lock and the color values of the points along said
lock.

For the shape matching Terleev uses OpenCV’s matchShape()
function with each lock to determine similarity using Hu-moment
values [2]. The team at Abto Software gets a match score by calcu-
lating the max exclusive (XOR) of adjacent areas after performing
10-pixel length translations left, right, up, and down [12]. For color

matching, Terleev uses Dynamic Time Warping (DTW) on the HSV
values along each segment. And Abto samples an average of the
RGB values for pixels that are perpendicular to the border and uses
that to compare two pieces by calculating their difference. Finally,
with these metrics calculated they can identify the best matches for
the puzzle by combining the two into a final score.

3 APPROACH
For our approach, we started with a solution similar to Terleev’s
and made a couple notable differences to improve performance and
include island piece matching. This approach can be summed up
with five steps:

(1) Image segmentation: extracting the border of each island
piece.

(2) Border unrolling: convert the border into a 1D strip.
(3) Lock identification: identify and segment out locks on

the strips.
(4) High-level filter: filter out unlikely matches based on

concavity.
(5) Shape and color matching: using DTW to get a final

match score using shape and color.

3.1 Image Segmentation
For image segmentation we tested four different methods to extract-
ing borders: adaptive thresholding, clustering, superpixelization,
and using Mask-RCNNs (a deep learning approach).

3.1.1 Thresholding. Adaptive thresholding is the fastest and sim-
plest approach. It separates desirable objects in the foreground
from the background using pixel intensities and a threshold value
as a cutoff. For this we used OpenCV’s adaptiveThreshold() method,
and to extract the actual borders from the segmented pieces we
used findContours() [2]. The downside to this method is that it only
works under ideal conditions. Differences in lighting can cause ex-
treme fluctuations in border accuracy and would require re-tuning
of parameters.

3.1.2 Clustering. With clustering the concept is similar to thresh-
olding, but instead of having to manually adjust parameters to each
lighting condition we can use unsupervised learning to do so. For
this we tried three different methods (all available with the SciKit-
Learn library): K-means, spectral, and fuzzy-c-means and found that
K-means worked the best in terms of speed and accuracy. However,
K-means was considerably slower than adaptive thresholding and
was not able to handle noisy backgrounds like a carpet [3, 16].

3.1.3 Superpixelization. A superpixel is a group of nearby pixels
which share common characteristics like pixel intensity. And using
the SciKit-image library we found that in ideal conditions with
relatively simple islands, Superpixelization managed to work well.
However, a significant problem arose under harder conditions with
artifacts forming due to overlapping/missing superpixels. Since
islands sometimes contained complex printed patterns, the super-
pixels would often bleed from the island’s border to the background,
ruining the edge [14]. In short, Superpixelization provided no more
benefit than thresholding and we still needed a method that worked
with noisy backgrounds.

Powerful Puzzling

Figure 2: A visual representation of the approached used by
Terleev, where rays are cast out from 4 different sides of the
puzzle piece to get a 1D representation of the piece [10].

3.1.4 Mask-RCNN. A Mask-RCNN is an image segmentation deep
learning model and is built-into the TensorFlow library [1]. It uses
an image classification model as a backbone and convolutional
layers to generate a mask of an instance [7].

The downside to this approach is that a lot of data is needed for
it to work. Using the VIA image annotator to generate the data [4],
we had to hand-labeled all the images. This was time-consuming
but crucial step. So, to reduce the necessary training set size needed
we used transfer learning - using the pretrained COCO weights
as a starting point [8]. We trained for twenty epochs with a small
learning rate of 0.001. The resulting trained model seemed to show
the most promise out of the attempts we have tried in terms of
dealing with noisy backgrounds. However, it struggles with large
islands which is due to the resolution of the masks. And due to
RAM limitations, this could not be increased.

We believe for this solution to work we would need to put a
lot more effort into creating a better dataset, training/tuning the
model, and acquiring all the computational resources needed to
do so. Considering that the focus of this paper is the matching
algorithm and not around segmenting puzzle pieces, we decided
it was not worth the effort. So, we decided to use the simplest
approach of adaptive thresholding as it was the fastest and best at
extracting puzzle pieces.

3.2 Border Unrolling
The goal of border unrolling is to convert our 2D representation
of the border (list of xy points) into a 1D representation that we
can use for matching by sliding across each border strip looking
for matches. This is important for matching large islands where
simple translations and rotations would fail.

We had originally thought to follow a similar technique to Ter-
leev’s where we “observe” the border from four sides as our 1D
representation, illustrated in figure 2 [9].

However, in Terleev’s own words “this does not guarantee the
100% cover of the borderline”. Which is especially true for U-shaped
islands, and large islands in general. We would be losing a lot of
information if we went with this method.

So, instead we choose to convert the 2D list of xy points to a
1D array by sampling the deviation angle as we move clockwise
around the puzzle piece. Then we just store the deviation angles in

Figure 3: A visual representation ofwhat the border unrolling
algorithm extracts from the border to represent it as a 1D
array. This was done using the Desmos online graphing cal-
culator (https://www.desmos.com/calculator/04ojjjnfzt).

a list as our “unrolled” border. This deviation angle is represented
in figure 3 as the angle between the red and blue dotted lines.

The angle is found by first calculating the length of each side on
the triangle formed by the three points using Euclidean distance.
Then we find the inner angle at point 𝐵 by using the law of cosines
and subtract by 180° (𝜋 radians) to get the deviation angle:

𝑑 = 𝜋 − 𝑐𝑜𝑠−1 (𝑎
2 + 𝑏2 − 𝑐2

2𝑎𝑏
)

Now we need to get which direction the angle is deviating (the
sign of the angle) to give us information on the concavity (convex
or concave). By the nature of 𝑐𝑜𝑠−1, if the input angle is greater than
90° (𝜋/2 rad) then the sign will flip so to stop this from happening
we define an adjustment term to be the following:

𝑎𝑑 𝑗 =
𝜋

2
− 𝑑

And to determine if we are going left (-) or right (+) we can use
the slope of the lines 𝐴𝐵 (red line) and 𝐵𝐶 (blue line) from figure 3
with the adjustment term to get the following equation, where𝑚1
and𝑚2 are the slopes of 𝐴𝐵 and 𝐵𝐶 , respectively:

𝑠 = 𝑠𝑖𝑔𝑛(𝑚1 −𝑚2
1 +𝑚1 ∗𝑚2

∗ 𝑎𝑑 𝑗)

Finally, by multiplying 𝑑 with 𝑠 we get our final angle that in-
cludes the direction of the deviation. One important thing to note is
that if we sampled every three points to get our angles our unrolled
border would be made up of mostly zero-degree angles and noise
would have a much larger impact (see figure 4). So, to solve this
we make sure to pick points that are a good distance away from
each other (we choose to sample points that are at least 25 indices
away).

3.3 Lock Identification
The lock of a puzzle piece is its jigsaw segments that form the
connections with other pieces. We need to be able to find and
segment these locks no matter how many there are on the island
using the unrolled border from the previous step.

https://www.desmos.com/calculator/04ojjjnfzt

Jean Charle Yaacoub, James Gleave, and Christian Muise

Figure 4: Plots showing how the sampling rate impacts the final unrolled border strip created. Left: the original border. Top-right:
the unrolled border with a sampling rate of 25. Bottom-right: the unrolled border with a sampling rate of 10.

Figure 5: A plot of the ratios of line points to non-line points
with x markers for the peaks that are identified by SciPy’s
find_peaks_cwt() function.

To do this we start by iterating through the unrolled border and
classifying points as “line points” and “non-line points” depending
on if their deviation angles are within a certain threshold. The
threshold basically determines if they are close enough to 0 to be
considered as a straight line (essentially zero deviation angle).

As we iterate through the unrolled border, we also keep track of
the ratio of line points to non-line points that we encounter. The
ratio also includes a 𝛾 forgetting factor so that as we travel along
the unrolled border points that are further away don’t impact the
ratio as much. In other words, the lower the 𝛾 the less we care about
previous points. The formula for this ratio is as follows, where 𝑁
and𝑀 are the numbers of line and non-line points, respectively.

𝑟𝑎𝑡𝑖𝑜 =
𝐿𝑛𝑒𝑤 + 𝐿𝑜𝑙𝑑 ∗ 𝛾
𝑁𝑛𝑒𝑤 + 𝑁𝑜𝑙𝑑 ∗ 𝛾

Plotting these ratios in 5 for the entire unrolled border it becomes
immediately clear where the locks/jigsaw nodes are. Note how the
peaks in figure 5 all match up with the locations of locks on the
original border (figure 4). Also, note that we do loop over the end
of the unrolled border to account for locks that are along the end
of the strip. We can see this with the peak at index 140 in figure 5.

Using SciPy’s find_peaks_cwt() we can quickly target these peaks
and make cuts to the left and right of the peak (where we encounter

Figure 6: A visualization of the final output for lock identifica-
tion. Red and yellow points indicate the “line” and “non-line”
points of the border. Lock segments are highlighted in green
with a red + sign indicating its start, and a blue X indicating
where it ends.

a line-point again) [15]. And with some extra padding we have
successfully identified the locks (see figure 6).

3.4 High-Level Filter
Looking back at the result from lock identification (figure 6) we
note that some segments are not actually locks and are just straight-
lines detected due to random noise. So, here we will filter out these
unwanted segments and classify locks as concave (into the island)
or convex (sticking out of the island). Then we can filter out all
matches that are not convex locks matching with concave locks,
thereby improving performance.

Powerful Puzzling

Starting with the first filter we can identify line segments by
performing a linear regression (on the original xy border positions)
and returning the Mean Squared Error of the regression. This MSE
will be low for line segments (0.0 up to 2.0) and large to extremely
large for any segment with curves on it (300 up to 1500). So, by using
a threshold of 5.0 we can easily filter out straight line segments.
However, one limitation to this is that we must perform regression
twice, alternating which axis is the horizontal axis and taking the
min value. This is to prevent vertical line segments from resulting
in a much higher MSE due to its near infinite slope.

Finally, for our second filter we can quickly classify concave from
convex locks by fitting a 2nd degree polynomial on the unrolled
border segment using Numpy’s polyfit() function [6]. Then we can
simply take the sign of the coefficient for the highest power as a
high-level indication of its lock shape (negative for convex, positive
for concave). Now we can check to see if a pair of segments are
shaped compatible before diving into the more computationally
expensive shape and color matching.

3.5 Shape and Color Matching
3.5.1 Shape Matching. For shape matching we originally tried to
use OpenCV’s matchShape() function with the original xy border
contours. This would calculate a distance value using Hu-moments
for each segment pair, and the segment pair with the lowest distance
would be the best match [2]. However, this failed due to the curved
nature of each segment and how unevenly distributed the points
were (curved sections were more densely populated).

So instead, we chose to use Dynamic Time Warping (DTW)
with the unrolled borders that we had segmented earlier. DTW is a
popular technique commonly used for comparing time-series-like
data to get a distance measure and local stretch or compressions
that can be applied to the time-series to map them on top of each
other [13]. This makes DTW a good candidate for comparing two
unrolled border segments.

In Tarleev’s approach they use an approximate DTW algorithm
from the fastDTW python package for color matching [9, 11]. How-
ever, in this case where we have a short series length and a narrow
warping factor (how much the pieces need to warp to overlay)
we decided against fastDTW in favor of the standard dtw-python
package. This is supported by how in our specific case FastDTW is
generally slower despite being an approximation [17].

So, using DTW we get distance values for lock segments of the
1D strips for shape matching. This would tell us crucial information
about howwell two locksmatch upwith each otherwithout needing
to perform any translations for a more accurate measure.

3.5.2 Color Matching. For color matching, more work is required
to get a proper measure of how similar the two colors are. First,
we need to ensure that we sample points along the border that are
guaranteed to be part of the puzzle and not the background. This is
done by calculating orthogonal points to the border on the original
puzzle piece and sampling from those points instead. We also apply
a median blur to the image to reduce the impact of noise.

The calculation of the orthogonal point requires sampling two
points from the original border. We treat the line connecting them
as the hypotenuse to a right-angled triangle. Then we can calculate
the length of all the sides of the triangle and use that to calculate

Figure 7: Illustration of how two sampled points from the
border (points A and B) can be used to find a third point (c)
that is orthogonal from the border and at a fixed distance 𝑑𝑖𝑠𝑡 .
This was done using the Desmos online graphing calculator
(https://www.desmos.com/calculator/4puznv4r7h).

the position of an orthogonal point with the following equations:

𝑐𝑥 = 𝐴𝑥 − 𝑑𝑖𝑠𝑡 ∗
ℎ

𝐻

𝑐𝑦 = 𝐴𝑦 + 𝑑𝑖𝑠𝑡 ∗
𝑤

𝐻
Where 𝑐 is the orthogonal point, 𝑑𝑖𝑠𝑡 is the distance away from

the border, andℎ,𝑤 , and𝐻 are the height, width, and hypotenuse of
the right triangle formed by the sampled points𝐴 and 𝐵 respectively
(illustrated in figure 7).

3.5.3 Putting it all together. Now that we have a way to measure
the color and shape distance of two segments, we can take their
normalized score and combine them in a weighted sum for our
final distance/match score. The weighted sum allows us to favor
one score over the other, depending on which is a better metric for
match compatibility.

4 EVALUATION
Looking at figure 8 we can see that the Powerful Puzzling algorithm
successfully identifies three connections out of the top five matches
when we apply the right weighting to the match scores. We found
that a weighting of (2,1) for shape and color, respectively, to be the
best. Taking a look at incorrect matches we note that there are no
instances of catastrophic failures where we have matches with line
segments, or matches of two completely incompatible shapes (e.g.
concave with concave). This largely thanks to the effectiveness of
the high level filters. However, when we weight color matching
higher than shape matching, we tend to see some catastrophic
failures with matches containing two convex or two concave locks
(see top-left image in figure 8).

We believe the culprit for the majority of failed matches is due
to the impact of noise on color matching. This is evident when we
compare results with different match score weightings. We can see
that with only shape matching (bottom-left plot in figure 8) we
still manage to get at least one match, but on the other hand, using

https://www.desmos.com/calculator/4puznv4r7h

Jean Charle Yaacoub, James Gleave, and Christian Muise

Figure 8: The final output of the Powerful Puzzling algorithm under different match score weightings for shape and color.
Displayed are the top 5 matches it found along with their match score (the lower the better). Lines in green indicate correctly
identified matches. Top-left: a weighting of (0,1) for shape and color respectively. Bottom-left: a weighting of (1,0). Right: a
weighting of (2,1).

only color matching (top-left image in figure 8) we get no correct
matches. One way to overcome the noisiness of color matching
would be to (on top of applying a median blur) take an averaging
of pixels along the orthogonal line to the border instead of a single
pixel.

Despite this, we know that color matching is still effective by
how much better the performance is when we have a weighting of
(2,1) compared to just shape matching alone (right plot in figure 8).

We also observe, from figure 9, that image segmentation using
Mask-RCNN does a overall good job at identifying islands from
a textured/fuzzy background. However, upon closer inspection
we notice that it fails to capture a crisp and clean border that is
crucial to the accuracy of the shape matcher and the high-level
filters, this occurs even under ideal conditions where we have a
plain background with even lighting. On the other hand, adaptive
thresholding thrives under ideal conditions and from figure 10 we
can see that it produces a superior border outline that is almost
perfect compared to the Mask-RCNN results.

Finally, in terms of performance observations the matching algo-
rithm performs exceptionally well taking a just over 2 seconds to
run (see table 1). We note that the main bottleneck is the extraction
of the border contours themselves taking around 1.3 seconds to
run.

5 CONCLUSION
Based on the results from evaluation we believe the Powerful Puz-
zling algorithm performed as we expected. It manages to be a suc-
cessful tool for players in spite of some incorrect match-ups which
can be easily ruled out by the player.

Aside from improving the color matcher to be more resilient to
noise, another addition to improve the accuracy of the matcher is
to prevent duplicate matches with a single segment from occurring.
This means for any segment where we have two pieces that are
contested on a single segment (e.g. the red and green segment in
the right plot of figure 8) the match with the lower score would
be forced to pick its next best candidate instead. This would be
a difficult problem to solve as we would need to keep track of
all the previous segments that each segment matches with and
continuously check if a better match has overtaken them to pick
the next candidate. This would also need to work in reverse to
restore segments when a match that overtook a previous match is
overtaken on its other segment.

Improving the border extraction process during image segmen-
tation could also improve the capabilities of the Powerful Puzzling
algorithm to work dynamically under various conditions. It would
be compelling to increase the resolution of the mask for the Mask-
RCNN to do so, as increasing the masks’ resolution would result

Powerful Puzzling

Figure 9: The output from Mask-RCNN border extraction
for a image of puzzle pieces that have a textured/fuzzy back-
ground. The image shows what the model thinks are island
pieces, along with the confidence value for each.

Figure 10: The output from adaptive thresholding border
extraction for a image of puzzle pieces under ideal conditions.
Here we see the extracted border as a red ‘transparent overlay
on top of the original image with an opaque border outline.

Table 1: The average time (of three trials) it takes for each
step of the Powerful Puzzling algorithm in seconds. For im-
age segmentation we only show the thresholding technique,
however, Mask-RCNN can perform faster if using GPU ac-
celeration.

Step Average (s)

Image Segmentation (Thresholding) 1.311
Border Unrolling and Lock Identification 0.611

Filtering and Matching 0.857
Total 2.779

in more accurate masks and allow for large islands to be more
accurately segmented with noisy backgrounds. But due to RAM
limitations this could not be tested and isn’t realistic.

Another idea to improve border extraction is to use a mix of
thresholding or grab-cut (like seen in Photoshop selecting) and
Mask-RCNN,where this techniquewould use the non-deep learning
techniques on the large islands [2]. Combining these two methods
could solve the two most significant problems we encountered.
The Mask-RCNN works exceptionally well for single pieces, even
in a noisy background, while thresholding was poor with noisy
backgrounds. A limitation of the grab cut method is that a region
of interest must be defined to segment; however, if we combined
grab cut with the Mask-RCNN, which produces regions of interest
within their bounding boxes, this limitation can be overcome.

To conclude, the work we have done here is still in its infancy.
Currently there are no readily available papers that discuss solutions
for jigsaw puzzle solvers that work with island pieces. We believe
that there is still a lot that can be improved with our Powerful
Puzzling algorithm, and hope future papers will eventually lead
to an improved version of the Powerful Puzzling algorithm with a
higher matching accuracy that works under any conditions.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, et al. 2015. TensorFlow: Large-Scale

Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/
Software available from tensorflow.org.

[2] G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools
(2000).

[3] Lars Buitinck, Gilles Louppe, Mathieu Blondel, and Others. 2013. API design for
machine learning software: experiences from the scikit-learn project. In ECML
PKDD Workshop: Languages for Data Mining and Machine Learning. 108–122.

[4] Abhishek Dutta and Andrew Zisserman. 2019. The VIA Annotation Software for
Images, Audio and Video. In Proceedings of the 27th ACM International Conference
on Multimedia (Nice, France) (MM ’19). ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3343031.3350535

[5] Miller Hannah. 2020. Demand for jigsaw puzzles is surging as coronavirus keeps
millions of Americans indoors. CNBC (April 2020). https://www.cnbc.com/2020/
04/03/coronavirus-sends-demand-for-jigsaw-puzzles-surging.html

[6] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, et al. 2020. Array
programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

[7] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. 2017. Mask
R-CNN. CoRR abs/1703.06870 (2017). arXiv:1703.06870 http://arxiv.org/abs/1703.
06870

[8] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, et al. 2014. Microsoft COCO:
Common Objects in Context. CoRR abs/1405.0312 (2014). arXiv:1405.0312 http:
//arxiv.org/abs/1405.0312

[9] Terleev Maxim. 2021. Jigsaw Puzzle AI from A to Z. Towards Data Science.
Retrieved February 22, 2022 from https://towardsdatascience.com/jigsaw-puzzle-
ai-from-a-to-z-b4bdb53d8686

[10] Terleev Maxim. 2021. Jigsaw puzzle geometrical fit. Retrieved February 22, 2022
from https://www.simple-ai.net/post/jigsaw-puzzle-geometrical-fit

[11] Stan Salvador and Philip Chan. 2007. Toward Accurate Dynamic Time Warping
in Linear Time and Space. Intell. Data Anal. 11, 5 (oct 2007), 561–580.

[12] Abto Software. 2018. Computer Vision Powers Automatic Jigsaw Puzzle Solver.
Abto Software. Retrieved February 22, 2022 from https://www.abtosoftware.
com/blog/computer-vision-powers-automatic-jigsaw-puzzle-solver

[13] Giorgino Toni. 2009. Computing and Visualizing Dynamic Time Warping Align-
ments in R: The dtw Package. Journal of Statistical Software 31, 7 (Aug. 2009),
1–24. https://doi.org/10.18637/jss.v031.i07

[14] Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-Iglesias, et al. 2014.
scikit-image: image processing in Python. PeerJ 2 (6 2014), e453. https://doi.
org/10.7717/peerj.453

[15] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, et al. 2020. SciPy 1.0: Fun-
damental Algorithms for Scientific Computing in Python. Nature Methods 17
(2020), 261–272. https://doi.org/10.1038/s41592-019-0686-2

[16] Josh Warner, Jason Sexauer, scikit fuzzy, et al. 2019. JDWarner/scikit-fuzzy:
Scikit-Fuzzy version 0.4.2. https://doi.org/10.5281/zenodo.3541386

https://www.tensorflow.org/
https://doi.org/10.1145/3343031.3350535
https://www.cnbc.com/2020/04/03/coronavirus-sends-demand-for-jigsaw-puzzles-surging.html
https://www.cnbc.com/2020/04/03/coronavirus-sends-demand-for-jigsaw-puzzles-surging.html
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://towardsdatascience.com/jigsaw-puzzle-ai-from-a-to-z-b4bdb53d8686
https://towardsdatascience.com/jigsaw-puzzle-ai-from-a-to-z-b4bdb53d8686
https://www.simple-ai.net/post/jigsaw-puzzle-geometrical-fit
https://www.abtosoftware.com/blog/computer-vision-powers-automatic-jigsaw-puzzle-solver
https://www.abtosoftware.com/blog/computer-vision-powers-automatic-jigsaw-puzzle-solver
https://doi.org/10.18637/jss.v031.i07
https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.5281/zenodo.3541386

Jean Charle Yaacoub, James Gleave, and Christian Muise

[17] Renjie Wu and Eamonn J. Keogh. 2020. FastDTW is approximate and Gener-
ally Slower than the Algorithm it Approximates. CoRR abs/2003.11246 (2020).

arXiv:2003.11246 https://arxiv.org/abs/2003.11246

https://arxiv.org/abs/2003.11246
https://arxiv.org/abs/2003.11246

	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Image Segmentation
	3.2 Border Unrolling
	3.3 Lock Identification
	3.4 High-Level Filter
	3.5 Shape and Color Matching

	4 Evaluation
	5 Conclusion
	References

