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Abstract

Vision Transformers (ViTs) have
demonstrated comparable or better image
classification performance than prior
models while using comparable or less
computational resources. Additionally,
Federated Learning (FL) has emerged as
the solution to private distributed learning
by allowing for distributed training on
separate client datasets. This paper
investigates the performance of ViTs
under the FL setting. The efficiency and
accuracy of ViTs are compared to the
performance of traditional Convolutional
Neural Networks (CNNs) with ResNet-50
and modern-day CNNs like ConvNeXt.
Results compare IID and non-IID settings
under simulated and real environments,
revealing that the original ViT model
outperforms prior ResNet-50 models and
is competitive with ConvNeXt in terms
of accuracy. These findings highlight
the value of investigating and optimizing
models in a federated environment
on edge devices and provide insight
into the use of ViTs for FL with their
efficiency and overall performance.
The code is publicly available at:
https://github.com/jyaacoub/FL-ViT.

1 Introduction

Visual media is an increasingly important source
of information in today’s digital age and can
provide valuable insights into a wide range of
applications including security, healthcare, and
entertainment. Visual media analysis involves
developing algorithms and methods capable of
extracting useful information from visual media.
Convolutional neural networks (CNNs) are one

such method that has seen widespread usage in
visual media analysis. Being quite effective at
identifying spatial relationships in both text and
image data, the CNN architecture builds up on
local patches of input data. CNNs extract local
features from the input images via convolutional
layers, then combine them to create complex
representations [1]. Recently, transformers have
seen a surge in usage based on the mechanism
of self-attention, prioritizing the most relevant
areas in the input. Attention scores are calculated
for each element in a sequence or set, then
used to weight the importance of each element’s
representation. The model can then determine
the relevant parts of the input and downplay
the importance of irrelevant or noisy information
[2]. Models with self-attention have become
more prevalent in natural language processing
(NLP) and computer vision tasks with a better
ability to capture long-range dependencies and
improve the quality of predictions [2]. Vision
transformers (ViTs) introduced patch embeddings
for the tokenization of images that bridged the
gap between NLP and CV. ViTs, based on the
Transformer model, have achieved state-of-the-art
results on many image classification tasks with
up to 4x the performance of CNNs in terms of
computational efficiency and accuracy [3].

Traditional machine learning approaches
largely depend on centralized data and processing,
which can be problematic in situations with
sensitive data such as healthcare data or financial
information. In addition, centralized processing
and data transfer can be computationally
expensive and subject to regulations. Federated
learning (FL) addresses these challenges by
enabling models to be trained locally on data
spread across multiple devices, with only model
updates shared with a centralized server [4, 5].
This approach increases privacy and adheres to



Figure 1: Architecture of the Vision Transformer
[3]

regulations that prevent sharing of sensitive data.
With the rapid advancements of new technology in
the image recognition and classification space, it
is intriguing to look into these topics, particularly
ViTs and FL, more closely.

2 Background

The original ViT architecture adopted the
transformer architecture with minimal changes to
make it suitable for image-based tasks (Figure 1).
ViT first divides an input image into a sequence
of non-overlapping patches. The size and number
of these patches depend on the ViT architecture
and the size of the input image. Each patch is
then flattened into a vector and projected into a
lower-dimensional embedding space which are
concatenated to form a sequence of embeddings,
similar to a series of word embeddings used
with text data. The sequence of embeddings is
then fed into the transformer encoder which is
made up of a Multi-Head Self-attention layer
(MSP), a Multi-Layer Perceptron (MLP), and
layer normalizations. The multiple attention
heads allow the model to capture a richer set of
features and relationships between image patches
and attend to the multiple parts of the image
simultaneously. The output of the final encoder
layer is a sequence of contextualized embeddings
that is then pooled and fed into the classification
head, typically a single fully connected layer to
obtain the class prediction.

Federated Learning is a machine learning
technique that allows data to be trained on a
distributed network of devices without the need
for centralized data storage. This approach allows
data to be kept private as no data is shared between
devices and clients. The process typically starts
with the server-side initialization of the model and
subsequent distribution of the model parameters

to the clients. Each device then trains the
model using its locally stored data, updating the
model parameters. These updates or parameters
are then shared back with the central server for
aggregation, combining the updated parameters
from each device. Once the central model has
been updated, it is once again reshared with the
devices for further training with each training
round further improving the model. Federated
averaging (FedAvg) is an algorithm to aggregate
the updates from the client devices. During each
training iteration, clients compute the gradients
using batches of the local data and update the local
model weights. These weights are then shared
with the central server where they are averaged
[4, 5].

The described approach is categorized as a
centralized federated learning strategy, where a
central server coordinates the client devices and
aggregates model updates during the training
process. This can pose a challenge as there
is a single point of failure in the central server
and also limited scalability as the central server
must be able to handle an increasingly large
number of incoming updates as the number of
devices increases. In a decentralized federated
learning strategy, model updates are exchanged
between devices without the orchestration from
a central server. Devices may exchange local
model updates with a subset of other devices
to form a global model or until a consensus is
reached. However, this is much more challenging
to implement. In either case, FL offers major
benefits with regard to privacy as sensitive data
can remain on the user’s device but still be used
for training. There may still be challenges such
as with the heterogeneous nature of the data
(non-IID), bad actors, and heterogeneous clients
with different hardware.

3 Related Work

Numerous studies have examined the comparisons
between vision transformers and CNN models.
Table 1 [6] presents an overview of the properties
and performance of various models on the
ImageNet dataset. Generally, ViTs demonstrate
similar or better top-1 accuracy compared to their
CNN counterparts, although they tend to have
lower throughput.

After the introduction of ViTs in 2019
and their subsequent dominance in the image
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Table 1: CNN and Transformer model properties
and performance on the ImageNet dataset. [6]

classification field, ConvNeXt was introduced in
2022 to revisit and modernize the idea of the
convolutional network [7]. It took lessons from
ViTs to create a new convolutional architecture
that outperformed prior ViT-based models [7].
However, ConvNeXt’s size proved to be inhibitory
for training on edge devices with limited memory
capacity. Thus, distilled versions of ConvNeXt
were also introduced such as ConvNeXt-tiny
which is comparable in size to the original ViTs
(see Table 2).

ConvNeXts utilize similar training techniques
as ViTs, including image augmentation,
regularization, and the AdamW optimizer.
Compared to ResNet, the sliding windows are
modified to be non-overlapping similar to the
image patches in Transformers, GELU is used
instead of RELU, and layer normalization is used
instead of batch normalization. The vast majority
of comparisons and optimization between these
and other models have been done in a standalone
environment. In the context of federated learning
environments, there has been significantly less
work dedicated to investigating and comparing
the performance of various models in terms of
feasibility and optimization [8].

4 Motivation/Goal

The main goal of this project is to investigate the
question: “How well would vision transformers

perform in the context of federated learning?”.
With the impressive performance and various
benefits provided by ViTs, looking at ViTs under
a FL environment could help address problems
around:

• Performance: ViTs are shown to perform
comparably or better than other models with
less computation [3]

• Scalability: Collecting data around a
centralized location is challenging, especially
data that are naturally decentralized or have
a need to be such as medical imaging.

• Privacy: Multiple parties could collaborate
and train the model without exposing any
data.

• Exponential growth of model sizes: Other
related models (CNNs, Convnext) are rapidly
growing in size, becoming problematic on
edge devices [9].

• Non-IID data: Different architecture could be
more robust under Non-IID settings.

5 Characterization/Ideas

To test ViT performance under FL, a pipeline
consisting of integrating the vision transformer
models in a federated learning environment was
built. There are various available tools for building
the ViT models and the FL framework such
as PyTorch and TensorFlow for model building,
and FedCV, TensorFlow Federated (TFF), and
Flower for FL. They each differ based on
the level of customizability and simplicity of
implementation. For example, the TFF has a
built-in CIFAR-100 dataset already processed for
FL and also integrates well with ML models
from Keras or TensorFlow. The tools and
frameworks chosen for this project were selected
based on familiarity and ease of implementation.
As this experiment required a bit more control
and customizability, the ViT model was built
independently with PyTorch, then integrated into
an FL environment setup and simulated using
Flower which has an emphasis on simplicity.

The CIFAR dataset is a collection of
labeled images commonly used for ML image
classification tasks and training. CIFAR-10
consists of 60,000 32x32 color images in 10
classes with 6,000 images per class. Classes
include airplanes, automobiles, birds, cats, deer,
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Model Name Model Card Num of Params
ViT google/vit-base-patch16-224 87M

DeiT facebook/deit-base-distilled-patch16-224 87M
DeiT-S facebook/deit-small-distilled-patch16-224 22M
BiT-50 google/bit-50 25M

ConvNeXt facebook/convnext-tiny-224 28M

Table 2: List of models tested as well as their number of parameters. The first three models are
transformer-based models, while the last two primarily use convolutions. Note that DeiT-S was selected
due to its comparable size to the distilled ConvNeXt.

dogs, frogs, horses, ships, and trucks. The dataset
is split into 50,000 training images and 10,000
testing images. CIFAR-100 consists of 60,000
32x32 color images in 100 classes with 600
images per class. The classes are grouped into
20 superclasses, each containing 5 subclasses.
For example, the ”aquatic mammals” superclass
contains the subclasses ”beaver,” ”dolphin,”
”otter,” ”seal,” and ”whale.” The dataset is split
into 50,000 training images and 10,000 testing
images. Both CIFAR-10 and CIFAR-100 are
widely used in research as benchmark datasets for
image classification algorithms and thus are also
used here.

The approach of this experiment can roughly be
divided into:

1. Data pre-processing: Datasets (CIFAR-10
and CIFAR-100) are pre-processed,
including generating patch embeddings
from images and random splitting to
simulate various clients

2. Build ViT model: Implement the encoder,
MLP head, and optionally load pre-trained
ImageNet weights

3. Build FL architecture: Implement the
centralized server, FedAVG algorithm [4].
An overview of the FL architecture is
provided in Figure 2 [10].

4. Train models in simulated FL environment

5. Performance Analysis: Assess feasibility and
performance metrics

6 Evaluation Methodology

To evaluate the performance of transformer
models under federated learning 5 models were
selected to compare against: ViT (the original
ViT base model), BiT-50 (the ResNet-50 model
that was compared against in the original paper),

Figure 2: Overview of the implemented
federated learning environment integrating
vision transformers [10]

ConvNeXt-Tiny (a distilled version of the SOTA
ConvNeXt model), DeiT (a data-efficient version
of ViT-B), and DeiT-S (a distilled version of ViT
that is comparable in size to ConvNeXt). The sizes
and addresses to the model cards for these models
can be found in Table 2.

Traditional datasets CIFAR-10 and CIFAR-100
were used. To test under a non-IID environment,
the TensorFlow-Federated CIFAR-100 dataset
was adapted to work with the PyTorch models
[11]. Note that for the IID case, the data was
normally distributed among clients. In terms of
hardware, due to memory constraints everything
was run on CPUs. FL environments were
simulated using the FL framework, Flower, with
an Intel i9-12900K and 32GB of DDR4 RAM.
To mimic real-world settings with heterogeneous
clients, a Windows Surface 2 laptop running on an
Intel Core i7-8650U with 16GB RAM and an old
Macbook Air running on an Intel Core i5-4250U
with 4GB RAM was used with the Intel i9-12900k
PC acting as the server.

In total, 3 different environments were
explored: IID Simulated FL, Non-IID Simulated
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Figure 3: CIFAR-10 and CIFAR-100 accuracies and loss under the IID simulated FL setting. The
Number of clients is 5 with 2 clients selected at each round for training. CIFAR-100 is trained for
longer (50 rounds) in order to converge. All other parameters are identical. Solid lines are test metrics
and faded lines are training metrics and the time elapsed for each model is shown on the right of each
figure.

FL, and Non-IID Real FL. From these, training
and testing metrics for accuracy and loss as well
as the total runtime were gathered. Note that for
the training metrics, the scores from all the clients
were aggregated at the end of each round to get an
average score which is the training metric for that
round. Additionally, a held-out dataset was used
to compute the testing metrics, server-side.

7 Results

7.1 IID Simulated FL
The CIFAR-10 and CIFAR-100 accuracies
and loss under the simulated FL environment
with IID data is shown in Figure 3. The
evaluation of different models in this task revealed
interesting insights into their performance. The
ViT models (green and blue) in particular,
consistently outperformed other models in terms
of accuracy, indicating the effectiveness of
their attention-based mechanism. However, the
distilled ConvNeXt model was also found to
have competitive performance, while having
outstanding efficiency with runtimes of less than
half the ViT models. The distilled ConvNeXt
model may be a promising alternative that
provides a good trade-off between performance
and efficiency, making it an attractive option for
real-world applications where computational

resources are limited such as in an FL
environment. In contrast, the BiT-50 model
was found to perform the worst in terms of both
runtimes and accuracy, as expected, highlighting
the significant advancements ViT models have
made.

7.2 Non-IID Simulated FL

Moving towards data that is more representative
of a real-world setting, results from the non-IID
data (Figure 4) reveal drastically worse overall
performance compared to the IID case with
notable overfitting issues, and a failure to achieve
high accuracies across all models. It is clear
that the non-IID data setting presents a more
challenging scenario for the models. Nonetheless,
both ViT models outperformed the ConvNeXt
models with better accuracy and loss. This
suggests that the attention mechanisms employed
in the ViT architecture could be more effective in
handling the challenges of non-IID data and can
possibly capture the relevant features better.

7.3 Non-IID Real FL

Finally, under the most realistic setting with
real non-simulated clients, Figure 5 again shows
how ViTs excel under an FL setting. Note
that due to time constraints, not all models
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Figure 4: Non-IID Simulated model accuracy
and loss using CIFAR-100 dataset from
Tensorflow-Federated [11]

were tested under this setting. Additionally,
DeiT was replaced by its smaller DeiT-S
showing how even distilled versions of ViTs
(less than half the size) outperform ConvNeXt.
DeiT-S also has the best runtime, outperforming
ConvNeXt under the simulated environment in
Figure 3. Further research could be done to
determine how well these models will perform
on other non-IID datasets, as different non-IID
patterns may require different learning strategies.
Overall, these results highlight the importance
of considering the distributional properties of the
data when designing machine learning models
and the potential benefits of using attention-based
architectures like ViTs in both IID and non-IID
scenarios under an FL environment.

8 Conclusion

In conclusion, this project aimed to investigate the
performance of vision transformers (ViTs) in the
context of federated learning (FL). The potential
benefits of ViTs in FL were explored in terms
of accuracy and computational efficiency. Using
PyTorch and integrating the models into the FL
environments with Flower, model performance
was evaluated using CIFAR-10 and CIFAR-100
datasets.

Through the evaluation of multiple
environments including IID Simulated FL,

Figure 5: Accuracy and loss for models in
Non-IID Real FL setting. Due to time constraints,
only ConvNeXt, ViT, and DeiT-S are evaluated.

Non-IID Simulated FL, and Non-IID Real
FL, it was found that ViT models consistently
outperformed other models in terms of accuracy.
In particular, the attention mechanisms employed
in the ViT architecture were found to be more
effective in handling the challenges of non-IID
data. Although the ConvNeXt model showcased
competitive performance and outstanding
efficiency, distilled ViTs such as DeiT-S, which
possess a similar number of parameters, offer an
attractive alternative for real-world applications
where computational resources may be limited.
However, it is important to note that as models are
made smaller, a trade-off occurs between accuracy
and efficiency ultimately leading to deteriorating
performance (see Figure 6 in the appendix).

Overall, the results of this study support the
feasibility and performance of ViTs in the context
of FL, while also highlighting the potential of
distilled models in providing a balance between
performance and efficiency. Further research
could investigate the performance of other ViT
variants like Swin-transformers under federated
learning settings, and explore other FL techniques
such as decentralized FL.
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A Additional Figures

Figure 6: Additional results for the Non-IID Real FL setting. DeiT-T is the smallest distilled ViT model
with only 5M parameters, yet is still competitive with ConvNeXt and runs substantially faster.
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